2 N ov 2 00 8 On a Diophantine problem with two primes and s powers of two

نویسندگان

  • A Languasco
  • A Zaccagnini
چکیده

We refine a recent result of Parsell [22] on the values of the form λ 1 p 1 + λ 2 p 2 + µ 1 2 m 1 + · · · + µ s 2 m s , where p 1 , p 2 are prime numbers, m 1 ,. .. , m s are positive integers, λ 1 /λ 2 is negative and irrational and λ 1 /µ 1 , λ 2 /µ 2 ∈ Q.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 9 On a Diophantine problem with two primes and s powers of two

We refine a recent result of Parsell [20] on the values of the form λ 1 p 1 + λ 2 p 2 + µ 1 2 m 1 + · · · + µ s 2 m s , where p 1 , p 2 are prime numbers, m 1 ,. .. , m s are positive integers, λ 1 /λ 2 is negative and irrational and λ 1 /µ 1 , λ 2 /µ 2 ∈ Q.

متن کامل

A problem of Diophantus and Dickson’s conjecture

A Diophantine m-tuple with the property D(n), where n is an integer, is defined as a set of m positive integers with the property that the product of its any two distinct elements increased by n is a perfect square. It is known that if n is of the form 4k + 2, then there does not exist a Diophantine quadruple with the property D(n). The author has formerly proved that if n is not of the form 4k...

متن کامل

Diophantine approximation with primes and powers of two

We investigate the values taken by real linear combinations of two primes and a bounded number of powers of two. Under certain conditions, we are able to demonstrate that these values can be made arbitrarily close to any real number by taking sufficiently many powers of two.

متن کامل

Almost powers in the Lucas sequence

The famous problem of determining all perfect powers in the Fibonacci sequence (Fn)n≥0 and in the Lucas sequence (Ln)n≥0 has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations Ln = qy, with a > ...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010